Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371557

RESUMO

The mutation and overexpression of the alpha-synuclein protein (αSyn), described as synucleinopathy, is associated with Parkinson's disease (PD)-like pathologies. A higher prevalence of PD is documented for men versus women, suggesting female hormones' implication in slowing PD progression. The nigrostriatal dopamine (DA) neurons in rodent males are more vulnerable to toxins than those in females. The effect of biological sex on synucleinopathy remains poorly described and was investigated using mice knocked out for murine αSyn (SNCA-/-) and also overexpressing human αSyn (SNCA-OVX) compared to wildtype (WT) mice. All the mice showed decreased locomotor activity with age, and more abruptly in the male than in the female SNCA-OVX mice; anxiety-like behavior increased with age. The SNCA-OVX mice had an age-dependent accumulation of αSyn. Older age was associated with the loss of nigral DA neurons and decreased striatal DA contents. The astrogliosis, microgliosis, and cytokine concentrations increased with aging. More abrupt nigrostriatal DA decreases and increased microgliosis were observed in the male SNCA-OVX mice. Human αSyn overexpression and murine αSyn knockout resulted in behavioral dysfunctions, while only human αSyn overexpression was toxic to DA neurons. At 18 months, neuroprotection was lost in the female SNCA-OVX mice, with a likely loss of estrus cycles. In conclusion, sex-dependent αSyn toxicity was observed, affecting the male mice more significantly.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Masculino , Feminino , Camundongos , Animais , Sinucleinopatias/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Corpo Estriado/metabolismo
3.
Neurobiol Dis ; 180: 106091, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967065

RESUMO

In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/genética , Leucócitos Mononucleares/metabolismo , Modelos Animais de Doenças , Fenótipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA